If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+4.5t-1.2=0
a = 4.9; b = 4.5; c = -1.2;
Δ = b2-4ac
Δ = 4.52-4·4.9·(-1.2)
Δ = 43.77
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4.5)-\sqrt{43.77}}{2*4.9}=\frac{-4.5-\sqrt{43.77}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4.5)+\sqrt{43.77}}{2*4.9}=\frac{-4.5+\sqrt{43.77}}{9.8} $
| 0.5(a+12)4=64 | | 4a+3-2a=27 | | 1/3(6+x)=4 | | เเก้สมการ20-5c=0 | | 20-5c=0 | | 70/5x=650 | | 4(a-1)/5=10 | | x/2=10/2 | | 4-2(m-7)=-4 | | 7(4x+6)/5=-5 | | 1/6x-2=10 | | 2x*(1/2)=20 | | 10x–2=46 | | 2p−9=4p−809 | | 10g–2=46 | | y-8/2=11 | | 8x-19=3(x-36 | | 1/2.t+4=13 | | 10(x-9)=-195 | | 3(a=12) | | (2x+6)(5-x)=0 | | 2(3x-12)=45 | | 16x3+5x+-4=0 | | 15-5/7v=5 | | 15-5/7*v=5 | | 25y=12.5 | | 49-7m=7 | | 32=54-(-r) | | 9=2y+8y= | | |x|+|2x-8|=14 | | -2u+10=-2 | | 2x+x+7=3x+7 |